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The onset of convection in a horizontal layer filled with a fluid-saturated porous medium is studied in this
paper. On the lower wall there is an exothermic surface reaction, described by the Arrhenius kinetics,
while the upper wall is subjected to uniform temperature and concentration. The problem, cast in dimen-
sionless form, is governed by three dimensionless parameters pertaining to the exothermic reaction and
the Lewis number. Once the basic state is solved, a linearized stability analysis is then performed and the
resulting eigenvalue problem is solved using a conventional shooting method. One determines numeri-
cally the critical Rayleigh and wave numbers at the onset of convection, for various values of the problem
parameters.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction peared in the last years. In [13] the free-convection boundary-
Literature concerning convective flow in porous media is abun-
dant. Much of the recent work in this area and more specifically to
convection in fluid-saturated porous layers may be found in the re-
cent books [1–9].

However, recent years revealed an increased interest about
fluid and thermal systems where chemical reactions take place.
These chemical reactions may undergo throughout the volume of
(porous) region which is analyzed or along interfaces/boundaries
of this region. Real-world applications include chemical engineer-
ing systems, contaminant transport in groundwater systems, or
geothermal processes. The catalytic systems are modeled usually
by including the description of the reaction kinetics of the catalytic
process and the transport of momentum, heat, and mass coupled to
this process. Concerning the transport phenomena, access to the
catalyst is determined by the transport of mass and energy in a
reactor. In heterogeneous catalysis, the access to the catalyst is
maximized through the use of porous structures. Examples of cat-
alytic surface reactions are methane/ammonia and propane oxida-
tion over platinum, see for instance [10,11].

Many papers focusing on chemically reacting flows were de-
voted in the past to the situation where the reaction occurs in a
spatially manner, see the references contained in [12]. But our
interest in the present context is related to the chemical reactions
which take place along interfaces/boundaries of the flow region.

In clear fluids a number of papers dealing with the effects of
catalytic chemical reactions on external convective processes ap-
ll rights reserved.
layer flow at a three-dimensional stagnation point of attachment
on a curved surface, due to an exothermic catalytic chemical
reaction on that surface is considered. It is assumed that the
flow is driven purely by heat supplied to the surrounding fluid
by an exothermic catalytic chemical reaction on the surface and
this reaction can be modeled using single, first-order Arrhenius
kinetics. Other two important papers focusing on free-convec-
tion stagnation point driven by the same mechanism of catalytic
surface reaction are [14,15], while [16,17] are studies in the
same area, involving flows along vertical surfaces in viscous
fluids.

Models for convective flows on reactive surfaces in porous med-
ia have been proposed for external flows by Merkin and Mahmood
[18], Mahmood and Merkin [19], Minto et al. [20]. The study by
Merkin and Mahmood [18] was extended by Postelnicu [21] for
porous media saturated with non-Newtonian fluids. In both
[18,21] bifurcation diagrams were presented for various combina-
tions of the problem parameters and hysteresis bifurcation curves
were identified, whenever they exist.

We consider in this paper the situation when the convective
flow in the porous layer is driven by an exothermic catalytic reac-
tion taking place on the lower surface whereby a reactive species P
reacts to form an inert product Q. On the upper surface usual
boundary conditions of uniform temperature and concentration
are imposed.

It seems, at the author’s best knowledge, that this kind of
boundary conditions have been not taken into account till now
in the analysis of the onset of convection in horizontal fluid-satu-
rated porous layers. Thus, the aim of the present paper is to find
how the critical Rayleigh number is modified by these boundary
conditions.
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Fig. 1. Geometry of the problem.

Nomenclature

A, B dimensionless parameters, defined in (13)
C concentration
D thermal diffusion of the porous medium
h depth of the horizontal layer
E activation energy
k wave number
k0 rate constant
km thermal conductivity of the porous medium
kT thermal conductivity of the surface
K permeability
Le Lewis number
Q heat of reaction
R* universal gas constant
R Rayleigh number
u, v components of the Darcian velocity in the x- and y-

direction
T temperature

t time
x, y co-ordinates along the porous layer and normal to it,

respectively

Greek symbols
b coefficient of thermal expansion
e activation energy parameter
u dimensionless concentration
j thermal diffusivity of the porous medium
h dimensionless temperature
q density
w stream function

Subscripts
b basic state
c critical value
r reference conditions
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2. Analyis

We consider a horizontal layer, see Fig. 1, of depth h, filled with
a fluid-saturated porous medium. The upper wall is subjected to
uniform temperature and concentration, while on the lower wall
there is an exothermic surface reaction, whereby reactant P is con-
verted to an inert product Q via the following first-order non-iso-
thermal reaction

P ! Q þ heat; rate ¼ k0C exp � E
R�T

� �
ð1Þ

known as the Arrhenius kinetics. Here E is the activation energy, R*

is the universal gas constant, k0 is the rate constant, T is the temper-
ature and C is the concentration of reactant P within the convective
fluid. This reaction scheme is a realistic one and has been used in
the past in modeling of combustion processes, and also for reactive
processes in porous media [18–21]. As noted in [18,19], the surface
reaction releases heat, which produces a convective flow close to
the surface and, in turn, fresh reactant will replace that used up
in the reaction. In this way, an interaction will occur between the
convective flow, heat transfer and mass transport of the reactant.

Using usual notations, the governing equations which describe
the problem at hand are mass conservation, Darcy’s law, equation
of energy and that of concentration
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where Tr is a reference temperature and over-bars refer to dimen-
sional quantities. The �x and �y axes are taken along the porous layer
and normal to it, respectively, and the lower wall is located at �y ¼ 0.
We point out that in writing Eq. (3), the Boussinesq approximation
was invoked and differences in reactant concentration (which may
induce buoyancy forces) are assumed to be small. The Darcy’s mod-
el is justifiable when the heat of reaction is small or moderate.
Otherwise, when the heat of reaction is large, non-Darcy models
must be used, see also [12,22].
The thermal boundary conditions on the lower wall are
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;D
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� �
ð6Þ

where kT is the thermal conductivity of the surface, Q is the heat of
reaction, which is taken as positive, meaning that heat is taken from
the surface into the surrounding fluid-porous medium by conduc-
tion. Eliminating the pressure, using the streamfunction w and
introducing the dimensionless quantities
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Eqs. (1)–(4) become
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where Le = j/D is the Lewis number and R is the Rayleigh number
defined as

R ¼ qgbKh
lj

� R
�T2

r

E
ð11Þ



Table 1
Solutions of Eq. (16).

A B e a A B e a

0.5 0.5 0 �0.43609 0.5 1 0 �0.28544
0.5 0.5 0.15 �0.42770 0.5 1 0.15 �0.28382
0.5 0.5 0.5 �0.41322 0.5 1 0.5 �0.28061
0.5 5 0 �0.08447 1 0.5 0 �1.28976
0.5 5 0.15 �0.08446 1 0.5 0.15 �1.13888
0.5 5 0.5 �0.08443 1 0.5 0.5 �0.98295
1 1 0 �0.65905 1 5 0 �0.17115
1 1 0.15 �0.64244 1 5 0.15 �0.17105
1 1 0.5 �0.61554 1 5 0.5 �0.17081
5 1 0 4.96536 5 5 0 �0.92663
5 1 0.15 �4.70158 5 5 0.15 �0.91807
5 1 0.5 �3.95265 5 5 0.5 �0.90305
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The boundary conditions are

w ¼ 0; onbothy ¼ 0andy ¼ 1 ð12aÞ
@h
@y
¼ �Au exp

h
1þ eh

� �
;
@u
@y
¼ Bu exp

h
1þ eh

� �
; on y ¼ 0 ð12bÞ

h ¼ 0; u ¼ 1; on y ¼ 1 ð12cÞ

where two dimensionless parameters A and B are introduced

A ¼ Qk0C0h
k

� E

R�T2
r

; B ¼ k0h
D
; e ¼ R�Tr

E
ð13Þ

and e is the activation energy parameter.

2.1. Basic state

The basic state is motionless ub = vb = wb = 0 and is character-
ized by the linear temperature and concentrations profiles

hb ¼ ayþ b; ub ¼ cyþ d ð14Þ

where the constants a, b, c, and d are obtained by enforcing the
boundary conditions (12). The following algebraic system is
obtained

a ¼ �Ad exp
b

1þ eb

� �
; c ¼ Bd exp

b
1þ eb

� �
;

aþ b ¼ 0; c þ d ¼ 1 ð15Þ

By combining these equations, we obtain the transcendental equa-
tion in a

aþ ðAþ BaÞ exp � a
1� ea

� �
¼ 0 ð16Þ

where three parameters are involved: A, B and e.

2.2. Stability analysis

Expressing

w ¼ W; h ¼ hb þH ¼ ayþ bþH; u ¼ ub þU ¼ cyþ dþU ð17Þ

where W, H and U are perturbed quantities, j W j� 1; j H� 1 and
j H j� 1, the linearized stability problem is governed by the
equations
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subject to the boundary conditions

W ¼ H ¼ 0; ony ¼ 0andy ¼ 1 ð21aÞ
dH
dy
¼ �AU exp

H
1þ eH

� �
;

dU
dy
¼ BU exp

H
1þ eH

� �
; on y ¼ 0

ð21bÞ
H ¼ U ¼ 0; ony ¼ 1 ð21cÞ

Now, taking into account that H and U are small quantities, the
boundary conditions (21b) can be linearized to give

dH
dy
¼ �AU;

dU
dy
¼ BU; on y ¼ 0 ð21dÞ

Looking for the solutions in the form

W ¼ ekt f ðyÞ sin kx; H ¼ ektgðyÞ cos kx; U ¼ ekthðyÞ cos kx ð22Þ
Eqs. (18)–(20) become

f 00 � k2f þ kRg ¼ 0 ð23Þ
g00 � ðk2 þ kÞg þ akf ¼ 0 ð24Þ
h00 � ðk2 þ kÞhþ ckf ¼ 0 ð25Þ

which must be solved along the boundary conditions

f ð0Þ ¼ 0; g0ð0Þ ¼ �Ahð0Þ; h0ð0Þ ¼ Bhð0Þ ð26aÞ
f ð1Þ ¼ 0; gð1Þ ¼ 0; hð1Þ ¼ 0 ð26bÞ

The problem formulated in (23)-(26) is an eigenvalue problem,
which must be solved for the Rayleigh number.

It can be shown that the principle of exchange of stability holds,
so we can take k = 0 in the previous equations. We mention that a
problem where the frequency (k in our case) is real, so that the
marginal stability occurs when k = 0, is said to obey the principle
of exchange of stability.

However, since there are no analytical solution of this eigen-
value problem, it will be solved numerically, by minimizing the
Rayleigh number over the wave number. The corresponding values
of the wavenumber and Rayleigh number are termed critical.

3. Numerical results

Eq. (16) was solved using an usual algebraic root solver, based
on interpolation and bisection methods. Solutions for the unknown
a are presented in Table 1, where various values between 0 and 5
were assigned for A and B, while the activation energy parameter e
was set to 0, 0.15 and 0.5, see for instance [18,22]. The eigenvalue
problem (23)–(26) was solved using a traditional shooting method.
A number of trials were performed in order to obtain grid-indepen-
dence results.

Before proceed further, it is important to ascertain the accuracy
of our eigenvalue solver. With this aim, we used alternatively the
routine dissolve from MAPLE 8. In Table 2 there is shown a com-
parison between the results obtained by the shooting method
and those provided by MAPLE. One remarks that the agreement
is very good, so that we are confident in our method.

We present further, in Table 3, critical values of Rayleigh num-
ber as a function of A, B, e and Le. We mention that in our numerical
simulations the Lewis number was taken as: 0.1, 1, 10 and 100.

� Inspection of Table 3 reveals that the effect of e is to slowly
increase the critical Rayleigh number, at given A and B, for any
Lewis number.

� Another important observation is concerning the combinations
of A and B which significantly increase the critical Rayleigh num-
ber. They are those with B smaller than A: we point out the max-
imum value of Rc which is 878.561, attained for Le = 100, B = 0.5,
A = 5 and e = 0.5.



Table 2
Comparisons of critical wavenumber and Rayleigh number for e = 0.5 and several
values of A, B and Le.

A B Le (kc, Rc)

Shooting Maple

1 1 0.1 2.336, 43.931 2.351, 44.534
1 0.5 0.1 2.326, 27.379 2.342, 27.755
0.5 0.5 1 2.326, 69.359 2.491, 70.048

Table 3
Critical Rayleigh number as a function of A, B, e and Le.

A B e Rc

Le = 0.1 Le = 1 Le = 10 Le = 100

0.5 0.5 0 61.714 65.722 95.844 155.892
0.5 0.5 0.15 62.924 67.010 97.723 158.947
0.5 0.5 0.5 65.130 69.359 101.149 164.520
0.5 1 0 94.737 104.656 171.674 249.877
0.5 1 0.15 95.278 105.253 172.654 251.303
0.5 1 0.5 96.369 106.459 174.631 254.182
0.5 5 0 324.941 406.310 741.858 878.088
0.5 5 0.15 324.995 406.377 741.982 878.234
0.5 5 0.5 325.116 406.529 742.258 878.561
1 0.5 0 20.866 22.145 32.406 52.709
1 0.5 0.15 23.631 25.079 36.700 59.692
1 0.5 0.5 27.379 29.058 42.521 69.161
1 1 0 41.032 45.328 74.354 108.224
1 1 0.15 42.092 46.499 76.276 111.022
1 1 0.5 43.931 48.531 79.608 115.873
1 5 0 160.376 200.536 366.147 433.384
1 5 0.15 160.478 200.663 366.380 433.659
1 5 0.5 160.697 200.937 366.880 434.252
5 1 0 26.366 27.014 32.770 43.101
5 1 0.15 27.846 28.530 34.608 45.520
5 1 0.5 33.122 33.937 41.166 54.146
5 5 0 29.622 37.040 67.629 80.048
5 5 0.15 29.899 37.386 68.260 80.795
5 5 0.5 30.396 38.007 69.396 82.139

Fig. 3. Variation of the critical Rayleigh number with B, for A = 0.5 and e = 0.5.
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In Fig. 2 there is depicted the variation of the critical wave num-
ber with B, for A = 0.5 and e = 0.5. It is seen that, at given Lewis
number, the critical wave-number increases with B, while increase
of the Lewis number leads to an increase of kc.

Critical Rayleigh number vs B is shown in Fig. 3, when A = 0.5
and e = 0.5. The critical Rayleigh number increases with B, almost
Fig. 2. Variation of the critical wave number with B, for A = 0.5 and e = 0.5.
linearly for small Lewis number. On the other hand, we remark
the usual increase of Rc with Le, a value near 240 being reached
by the critical Rayleigh number for B = 1, when Le = 100.

Fig. 4 depicts the critical Rayleigh number as a function of A, for
B = 5 and e = 0. Now the monotonicity of Rc with A is opposite as
compared with Fig. 2. But the above quoted remark, on the in-
crease of Rc with Le holds, as expected.

Sharp variation of kc as a function of the Lewis number is ob-
served in Fig. 5 (A = 1, B = 5 and e = 0.5), till Le reaches approxi-
mately 15, then the curve flattens at a value of five of the critical
wave number. A somewhat similar situation occurs with the criti-
cal Rayleigh number, for Le less than 25 and further, after this va-
lue, Rc increases slightly till about 440, when Le = 100, see Fig. 6.

4. Conclusion

In this paper the onset of convection in a horizontal layer filled
with a fluid-saturated porous medium is investigated numerically.
On the lower wall there is an exothermic surface reaction, de-
Fig. 4. Critical Rayleigh number as a function of A, for B = 5 and e = 0.



Fig. 5. Values of the critical wave number vs Lewis number, for A = 1, B = 5 and
e = 0.5.

Fig. 6. Values of the critical Rayleigh number vs Lewis number, for A = 1, B = 5 and
e = 0.5.
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scribed by the Arrhenius kinetics, while the upper wall is subjected
to uniform temperature and concentration. The basic state is
motionless, but with linear temperature and concentration pro-
files. We found that in comparison with the classical Darcy–Benard
problem, of porous layers heated from below and cooled from
above, there are significant differences, due to the parameters in-
volved in the basic state, which are present also in the (linearized)
stability equations.

We mention to this end that a preliminary version of this study
was presented in [23].
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